Composite reliability assessment of systems with grid‐edge renewable resources via quasi‐sequential Monte Carlo and cross‐entropy techniques

Author:

Manso Bruno A. S.1,Leite da Silva Armando M.1ORCID,Milhorance André1,Assis Fernando A.2ORCID

Affiliation:

1. Department of Electrical Engineering Pontifical Catholic University of Rio de Janeiro Rio de Janeiro Brazil

2. Department of Electrical Engineering Federal University of São João del‐Rei São João del‐Rei Brazil

Abstract

AbstractThe still growing share of intermittent renewable sources in the electric energy matrix is a factor that greatly increases the complexity of modelling electrical power systems. Although its exploitation is conditioned to the geographic location where the natural resource emerges itself, when this location coincides with the grid‐edge of the system, close to the consumer, the composite reliability assessment is exposed to the combination of two problems: (i) representation of the intermittent energy availability of generators; and (ii) failure event rarity. To address the first problem, a fast Monte Carlo tool capable of representing chronological aspects can be used. For the second problem, an efficient variance reduction technique that adapts well to the composite problem of generation and transmission must be established. Therefore, a quasi‐sequential Monte Carlo simulation tool aided by importance sampling via the cross‐entropy method is proposed as an efficient and robust procedure for evaluating the composite reliability of systems with renewable participation at grid‐edge. The method is evaluated through a modified version of the IEEE Reliability Test System ‐ 1996, which presents renewable generation in consumer load buses and rarity in the composite failure.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3