A PLC communication characteristics‐based fault location method in medium voltage meshed distribution networks

Author:

Bin Chen1,Min‐gang Tan12ORCID,Junliang Qian1,Yi Tang3,Chaohai Zhang1

Affiliation:

1. Department of Electrical Engineering Nanjing University of Aeronautics and Astronautics Nanjing China

2. Smart Grid Research Institute Nanjing Institute of Technology Nanjing China

3. School of Electrical Engineering Southeast University Nanjing China

Abstract

AbstractA power line carrier (PLC) communication characteristics‐based method is proposed for single‐phase‐to‐ground fault location in neutral isolated medium voltage meshed distribution networks in this paper. The carrier signals with a time‐varying frequency and constant amplitude are processed by a set of PLC transmitters and receivers, whose placement is optimized by regarding the power network as an undirected graph. Two signal encoding and decoding algorithms for the PLC terminals are proposed to avoid using expensive timing systems between the terminals. The fault location technique is implemented by comparing the cosine similarity of amplitude attenuation and phase offset between the fault and a feature library. The node corresponding to the maximum cosine similarity of the characteristics between the present fault and the library is selected as the location of the current fault. Only one set of low‐cost PLC communication terminals and the widely available power lines are needed in the fault location system, making this approach highly practical. Numerical simulations using MATLAB/Simulink have been performed to verify the technique's feasibility. The results show that the method can accurately locate faults in neutral isolated medium voltage meshed distribution networks. Besides, the presented approach achieves a high level of accuracy in estimating transition resistance values.

Funder

National Key Research and Development Program of China

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study of Reliability of Low and Medium Voltage Distribution Networks Based on Fault Tree Theory;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3