A subsystem‐based fault location method in distribution grids by sparse measurement

Author:

Lv Xiaodong1ORCID,Yuan Lifen1,Cheng Zhen1,Yin Baiqiang1,He Yigang2,Ding Chengwei1

Affiliation:

1. School of Electrical Engineering and Automation Hefei University of Technology Hefei China

2. School of Electrical Engineering and Automation Wuhan University Wuhan China

Abstract

AbstractWith the development of smart meters and other intelligent electronic devices, more and more data‐driven fault location methods based on wide area measurement are emerging. However, these diagnostic methods for dealing with the whole tested system often appear complex. This paper presents an innovative subsystems‐based fault location strategy in distribution grid by the sparsity promoted Bayesian learning algorithm. To avoid taking measurement for the whole distribution system, the fault‐included subsystem is selected according to the distribution characteristics of negative sequence voltage. Then the data for fault location is measured by allocating meters in subsystem, which can reduce the number of required meters. For accurately estimating the fault location, a sparse prior is proposed for the Bayesian learning, which could improve the accuracy of the fault location algorithm by about 4%. The performance is tested on a 12.66‐kV, 69‐bus distribution system in response to various fault scenarios. The results show that the accuracy of the proposed method for the fault section location can reach 90%. It also verifies the robustness and accuracy for fault line location, faced different fault types, fault resistance, noise, etc.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced State Estimation Approach for Partially Observable Shipboard Power Systems;Journal of Marine Science and Engineering;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3