Characterization of internal discharge shock waves of gas‐insulated switchgears using shadowgraphy

Author:

Jia Chenglong1ORCID,Chu Penghao2,Zhao Wenbin1,Tang Zhong1

Affiliation:

1. College of Electrical Engineering Shanghai University of Electrical Power Shanghai China

2. State Grid Xinxiang Electric Power Company Xinxiang China

Abstract

AbstractThe gas‐insulated switchgear (GIS) is a vital component of a power system, and understanding the shock wave characteristics of its internal discharge is crucial to ensure the safe and stable operation of the entire system. In this study, a high‐speed shadowing technique is employed to obtain the shadowgraphs of a typical flow‐field evolution of sulfur hexafluoride (SF6) gas following the breakdown of a pin–plate gap inside a GIS. Experimental data were used to derive parameters, including the Mach number, propagation speed, distance of the discharge shock wave, and the temperature, pressure, density, and velocity of the SF6 gas after wave generation. With a 0.2‐mm discharge gap and 0.4‐MPa pressure, the discharge generates a spherical shock wave, centred at the contact between the discharge channel and electrodes, that propagates in all directions. The shock wave gradually weakens after 20 μs, propagating at near‐sonic speed, and its Mach number decreases from 2.92 to 1.15; similarly, its post‐wave parameters sharply decrease during the first 20 μs. Additionally, a significant reflection occurs when the shock wave propagates to the metal wall. The authors’ findings provide a valuable reference for detecting and diagnosing the internal discharge in GISs.

Funder

National Key Research and Development Program of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3