Hosting capacity of distribution networks for controlled and uncontrolled residential EV charging with static and dynamic thermal ratings of network components

Author:

Zakaria As’ad1,Duan Chengyan1,Djokic Sasa Z.1ORCID

Affiliation:

1. School of Engineering The University of Edinburgh Edinburgh Scotland UK

Abstract

AbstractThe ongoing electrification of road transportation sector, which is expected to continue to strongly increase over the next years, will result in the connection of a significant number of electric vehicle (EV) chargers in LV and MV distribution networks, particularly in residential applications with on‐board (“slow”) EV chargers. In order to evaluate loading limits of existing distribution networks for the maximum number of EV chargers that can be safely connected (commonly denoted as a network EV “hosting capacity”, HC), this paper introduces a general approach to determine one commonly used network design parameter (after‐diversity maximum demand, ADMD) and one new parameter (maximum daily energy demand, MDED), which are both obtained from the load profiles of maximum per‐hour demands for uncontrolled residential EV charging. The presented approach uses actual EV charging data from the UK as the inputs in Monte Carlo simulations to generate daily EV charging profiles for arbitrary numbers of EVs, enabling to identify related ADMD, MDED and per‐hour maximum demand values, as well as their seasonal variations. The assessed ADMD, MDED and hourly maximum EV charging demands for uncontrolled EV charging are then combined with available UK residential daily load profiles before the EVs are connected (“pre‐EV demands”), where their combined coincidental and noncoincidental maximum demands are evaluated against the static thermal rating (STR) and dynamic thermal rating (DTR) loading limits of network components (transformers and overhead lines), taking into account relevant weather/ambient conditions. This is denoted as a network HC for uncontrolled EV charging. Finally, evaluating the resulting per‐hour maximum demand values against the STR and DTR loading limits and MDED values allows to select one particular scheduling method for controlled EV charging, which gives the absolute maximum number of EVs that can be safely connected in the considered network, that is, maximum network HC for fully controlled EV charging. The presented approach is illustrated on the example of the IEEE 33‐bus test network (modelled using typical UK network components), for the pre‐EV residential demands taken from the recordings at a UK MV substation, and for ambient data taken from a UK Met Office weather station. Obtained results allow to evaluate the range of network EV HC values for uncontrolled and controlled EV charging, that is, lower and upper HC limits, which can be correlated with the commonly used allocations of the firm and non‐firm network HC, respectively.

Funder

Engineering and Physical Sciences Research Council

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3