Exploiting machine learning to tackle peculiar consumption of electricity in power grids: A step towards building green smart cities

Author:

Ali Arshid1ORCID,Khan Laiq1,Javaid Nadeem2ORCID,Aslam Muhammad3,Aldegheishem Abdulaziz4ORCID,Alrajeh Nabil5ORCID

Affiliation:

1. Department of Electrical and Computer Engineering COMSATS University Islamabad Islamabad Pakistan

2. Department of Computer Science COMSATS University Islamabad Islamabad Pakistan

3. Department of Computer Science Aberystwyth University Aberystwyth UK

4. Department of Urban Planning, College of Architecture and Planning King Saud University Riyadh Saudi Arabia

5. Department of Biomedical Technology, College of Applied Medical Sciences King Saud University Riyadh Saudi Arabia

Abstract

AbstractThe increasing demand for electricity in daily life highlights the need for Smart Cities (SC) to use energy efficiently. Both technical and Non‐Technical Losses (NTL), particularly those resulting from electricity theft, present powerful obstacles; NTL alone can reach billions of dollars. Although Machine Learning (ML) based approaches for NTL detection have been embraced by numerous utilities, there is still a lack of thorough analysis of these methods. Limited research exists on NTL identification evaluation criteria and unbalanced data management in the context of SC. This research compares ML algorithms and data balancing methods to optimize electricity consumption detection. The given research applied the 15 ML techniques of Logistic regression, Bernoulli naive Bayes, Gaussian naive Bayes, K‐Nearest Neighbour, perceptron, passive‐aggressive classifier, quadratic discriminant analysis, SGD classifier, ridge classifier, linear discriminant analysis, decision tree, nearest centroid classifier, multi‐nomial naive Bayes, complement naive Bayes and dummy classifier. While SMOTE, AdaSyn, NRAS, and CCR are considered for data balancing. AUC, F1‐score, and seven relevant performance metrics were used for comparison. We have also implemented SHapely Additive exPlanations (SHAP) for feature importance and model interpretation. Results show varying classifier performance with different balancing methods, emphasizing data preprocessing's role in NTL detection for smart grid security.

Funder

King Saud University

Publisher

Institution of Engineering and Technology (IET)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3