Affiliation:
1. Hebei Provincial Collaborative Innovation Center of Transportation Power Grid Intelligent Integration Technology and Equipment Shijiazhuang Tiedao University Shijiazhuang China
2. School of Electrical and Electronic Engineering Shijiazhuang Tiedao University Shijiazhuang China
3. Hebei Province Distributed Energy Application Technology Innovation Center Shijiazhuang China
4. Tianjin Municipal Engineering Design and Research Institute Co. LTD Tianjin China
Abstract
AbstractIn this study, a new short‐term wind power prediction model based on a temporal convolutional network (TCN) and the Informer model is proposed to solve the problem of low prediction accuracy caused by large wind speed fluctuations in short‐term prediction. First, an input feature selection method based on the maximum information coefficient is proposed after considering the problem of information interference caused by excessively large input features. A dynamic time planning method is used to select the optimal input step of historical power. Then, the combined forecasting model composed of TCN and the Informer is constructed in accordance with the numerical weather forecast and historical power data. Lastly, the pinball loss function is used to expand the prediction model into a quantile regression model, measure the effect of volatility, quantify the volatility range of prediction, and finally, obtain a deterministic prediction result. The actual measured data of wind farms in the Bohai Sea area are selected for analysis and calculation. The results show that the prediction model proposed in this study achieves better accuracy in deterministic prediction and interval prediction than the traditional model.
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献