PCBDet: An efficient deep neural network object detection architecture for automatic PCB component detection on the edge

Author:

Li B.12ORCID,Palayew S.2,Li F.2,Abbasi S.12,Nair S.1,Wong A.12

Affiliation:

1. University of Waterloo Faculty of Engineering Waterloo Canada

2. DarwinAI Waterloo Canada

Abstract

AbstractThere can be numerous electronic components on a given PCB, making the task of visual inspection to detect defects very time‐consuming and prone to error, especially at scale. There has thus been significant interest in automatic PCB component detection, particularly leveraging deep learning. While deep neural networks are able to perform such detection with greater accuracy, these networks typically require high computational resources, limiting their feasibility in real‐world use cases, which often involve high‐volume and high‐throughput detection with constrained edge computing resource availability. To bridge this gap between performance and resource requirements, PCBDet, an attention condenser network design that provides state‐of‐the‐art inference throughput while achieving superior PCB component detection performance compared to other state‐of‐the‐art efficient architecture designs, is introduced. Experimental results show that PCBDet can achieve up to 2× inference speed‐up on an ARM Cortex A72 processor when compared to an EfficientNet‐based design while achieving ∼2–4% higher mAP on the FICS‐PCB benchmark dataset.

Publisher

Institution of Engineering and Technology (IET)

Reference9 articles.

1. Lu H. Mehta D. Paradis O. Asadizanjani N. Tehranipoor M. Woodard D.L.:FICS‐PCB: a multi‐modal image dataset for automated printed circuit board visual inspection(2020). eprint.iacr.org/2020/366.pdf (accessed Aug. 12 2022)

2. Kuo C.‐W. Ashmore J. Huggins D. Kira Z.:Data‐efficient graph embedding learning for PCB component detection. In:2019 IEEE Winter Conference on Applications of Computer Vision pp.551–560.IEEE Piscataway NJ(2019)

3. Balanced-YOLOv3: Addressing the Imbalance Problem of Object Detection in PCB Assembly Scene

4. A deep context learning based PCB defect detection model with anomalous trend alarming system

5. Wong A. Shafiee M.J. Abbasi S. Nair S. Famouri M.:Faster attention is what you need: a fast self‐attention neural network backbone architecture for the edge via double‐ condensing attention condensers. arXiv:2208.06980 (2022)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. STFE-YOLOX: A Small Target Recognition Network for Surface Mount Component Detection;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3