Neural network channel estimator for time‐variant frequency‐selective fading channels

Author:

Barragam Vinicius Piro1ORCID,Jerji Fadi1,Akamine Cristiano1

Affiliation:

1. Graduate Program in Electrical Engineering and Computing Mackenzie Presbyterian University São Paulo Brazil

Abstract

AbstractThe next generations of wireless communications systems are pushing the limits of the channel estimation methods utilized in the orthogonal frequency division multiplexing receptors. This letter proposes a novel channel estimation method using a densely connected neural network considering the time‐variant frequency‐selective fading channel model. A fully connected deep neural network for the AWGN channel case is also proposed. The comparative complexity of the estimation for different channel models is also discussed. The simulation results demonstrate that the densely connected neural network method surpasses the minimum mean‐square error method performance for a signal‐to‐noise ratio ranging from 0 to 25 dB in the frequency‐selective channel.

Funder

Universidade Presbiteriana Mackenzie

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

Reference12 articles.

1. Broadband MIMO-OFDM wireless communications

2. Van De Beek J.J. Edfors O. Sandell M. Wilson S.K. Borjesson P.O.:On channel estimation in OFDM systems. In:1995 IEEE 45th Vehicular Technology Conference Countdown to the Wireless Twenty‐First Century vol.2 pp.815–819.IEEE Piscataway NJ(1995)

3. Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems

4. Deep Learning-Based Channel Estimation

5. Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced ZF and LS channel estimators for OFDM with MPSK modulation;2024 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB);2024-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3