A fully integrated nanosecond burst RF generator for quantum technologies

Author:

Sánchez‐Azqueta Carlos1ORCID,Aldea Concepción2,Celma Santiago2

Affiliation:

1. Group of Electronic Design, Aragón Institute of Engineering Research (I3A), Department of Applied Physics University of Zaragoza Zaragoza Spain

2. Group of Electronic Design, Aragón Institute of Engineering Research (I3A), Department of Electronic and Communications Engineering University of Zaragoza Zaragoza Spain

Abstract

AbstractQuantum technologies is an emerging field of physics and engineering based on exploiting properties of quantum mechanics such as entanglement, superposition, or tunneling, and which is expected to impact many applications, such as communications, simulation, computation, or sensing and metrology. The operation of quantum technologies is based on the manipulation of the quantum states of certain devices, either to induce transitions between states or to detect the transitions. Irrespective of the practical realization of these quantum devices, their manipulation requires interacting with their quantum resonant states, for which very narrow radio‐frequency (RF) bursts in the range of the GHz are required. Arbitrary waveform generators are used to generate these signals for test purposes, but this is not suitable for practical quantum technology applications, which will need to produce the required bursts by specific circuit building blocks with low power and small dimensions. Here, an integrated RF burst generator capable of producing GHz bursts shorter than 1 ns is presented. The proposed architecture is tested using a 5 GHz quadrature LC‐tank voltage‐controlled oscillator (LC‐VCO), showing that the four equally spaced phases can be switched every 500 ps, which allows the generation of more complex RF bursts for optimized quantum state manipulation.

Funder

Agencia Estatal de Investigación

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3