Light‐field image super‐resolution with depth feature by multiple‐decouple and fusion module

Author:

Chan Ka‐Hou12ORCID,Im Sio‐Kei12ORCID

Affiliation:

1. Faculty of Applied Sciences Macao Polytechnic University Macau China

2. Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Ministry of Education Macao Polytechnic University Macau China

Abstract

AbstractLight‐field (LF) images offer the potential to improve feature capture in live scenes from multiple perspectives, and also generate additional normal vectors for performing super‐resolution (SR) image processing. With the benefit of machine learning, established AI‐based deep CNN models for LF image SR often individualize the models for various resolutions. However, the rigidity of these approaches for actual LF applications stems from the considerable diversity in angular resolution among LF instruments. Therefore, an advanced neural network proposal is required to utilize a CNN‐based model for super‐resolving LF images with different resolutions obtained from provided features. In this work, a preprocessing to calculate the depth channel from given LF information is first presented, and then a multiple‐decouple and fusion module is introduced to integrate the VGGreNet for the LF image SR, which collects global‐to‐local information according to the CNN kernel size and dynamically constructs each view through a global view module. Besides, the generated features are transformed to a uniform space to perform final fusion, achieving global alignment for precise extraction of angular information. Experimental results show that the proposed method can handle benchmark LF datasets with various angular and different resolutions, reporting the effectiveness and potential performance of the method.

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3