ℓ1${\ell }_1$ norm‐based recursive estimation for non‐linear systems with non‐Gaussian noises

Author:

Qin Yuemei1,Li Jun1ORCID,Li Shuying1

Affiliation:

1. School of Automation Xi'an University of Posts & Telecommunications Xi'an Shaanxi China

Abstract

AbstractThis study addresses the state estimation problem of discrete‐time non‐linear stochastic systems with non‐Gaussian noises, particularly impulsive noises. Instead of minimizing the mean square error of the state estimate, which tends to excessively focus on outliers caused by non‐Gaussian noises, the norm‐based non‐linear recursive filter (L1KF) is put forward in this paper. Here, minimizing the norm of model errors is actually to pursue the minimum sum of absolute values of all errors, which is equitable to all model errors rather than paying much attention on outliers. To further improve estimation accuracy, a recursive nonlinear smoother (L1KS) is proposed, based on minimizing the norm of model errors. The proposed norm‐based filter and smoother are implemented using unscented transformation for statistical linear regression applied to nonlinear models. Additionally, the computational complexity of the proposed method is analysed. Simulation results of tracking a radar target with impulsive noises demonstrate the effectiveness and robustness of the proposed estimator.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3