Closed‐loop stability analysis of deep reinforcement learning controlled systems with experimental validation

Author:

Mohiuddin Mohammed Basheer1ORCID,Boiko Igor2ORCID,Azzam Rana3ORCID,Zweiri Yahya4ORCID

Affiliation:

1. Department of Mechanical and Nuclear Engineering and Khalifa University Center for Autonomous Robotic Systems (KUCARS) Khalifa University Abu Dhabi UAE

2. Department of Electrical Engineering and KUCARS Khalifa University Abu Dhabi UAE

3. Department of Mechanical and Nuclear Engineering and KUCARS Khalifa University Abu Dhabi UAE

4. Department of Aerospace Engineering and Advanced Research and Innovation Center (ARIC) Khalifa University Abu Dhabi UAE

Abstract

AbstractTrained deep reinforcement learning (DRL) based controllers can effectively control dynamic systems where classical controllers can be ineffective and difficult to tune. However, the lack of closed‐loop stability guarantees of systems controlled by trained DRL agents hinders their adoption in practical applications. This research study investigates the closed‐loop stability of dynamic systems controlled by trained DRL agents using Lyapunov analysis based on a linear‐quadratic polynomial approximation of the trained agent. In addition, this work develops an understanding of the system's stability margin to determine operational boundaries and critical thresholds of the system's physical parameters for effective operation. The proposed analysis is verified on a DRL‐controlled system for several simulated and experimental scenarios. The DRL agent is trained using a detailed dynamic model of a non‐linear system and then tested on the corresponding real‐world hardware platform without any fine‐tuning. Experiments are conducted on a wide range of system states and physical parameters and the results have confirmed the validity of the proposed stability analysis (https://youtu.be/QlpeD5sTlPU).

Funder

Khalifa University of Science, Technology and Research

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3