Adaptive polynomial Kalman filter for nonlinear state estimation in modified AR time series with fixed coefficients

Author:

Sivaraman Dileep1,Ongwattanakul Songpol1ORCID,Pillai Branesh M.1ORCID,Suthakorn Jackrit1ORCID

Affiliation:

1. Department of Biomedical Engineering Center for Biomedical and Robotics Technology (BART LAB) Faculty of Engineering Mahidol University Nakhon Pathom Thailand

Abstract

AbstractThis article presents a novel approach for adaptive nonlinear state estimation in a modified autoregressive time series with fixed coefficients, leveraging an adaptive polynomial Kalman filter (APKF). The proposed APKF dynamically adjusts the evolving system dynamics by selecting an appropriate autoregressive time‐series model corresponding to the optimal polynomial order, based on the minimum residual error. This dynamic selection enhances the robustness of the state estimation process, ensuring accurate predictions, even in the presence of varying system complexities and noise. The proposed methodology involves predicting the next state using polynomial extrapolation. Extensive simulations were conducted to validate the performance of the APKF, demonstrating its superiority in accurately estimating the true system state compared with traditional Kalman filtering methods. The root‐mean‐square error was evaluated for various combinations of standard deviations of sensor noise and process noise for different sample sizes. On average, the root‐mean‐square error value, which represents the disparity between the true sensor reading and estimate derived from the adaptive Kalman filter, was 35.31% more accurate than that of the traditional Kalman filter. The comparative analysis highlights the efficacy of the APKF, showing significant improvements in state estimation accuracy and noise resilience.

Funder

Mahidol University

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3