Evaluating the Impact of Data Transformation Techniques on the Performance and Interpretability of Software Defect Prediction Models

Author:

Zhao Yu1ORCID,Huang Zhiqiu1ORCID,Gong Lina1ORCID,Zhu Yi2ORCID,Yu Qiao2ORCID,Gao Yuxiang2ORCID

Affiliation:

1. School of Computer Science and Technology, Key Laboratory of Safety-Critical Software, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China

2. School of Computer Science and Technology, Jiangsu Normal University, Xuzhou 221116, China

Abstract

The performance of software defect prediction (SDP) models determines the priority of test resource allocation. Researchers also use interpretability techniques to gain empirical knowledge about software quality from SDP models. However, SDP methods designed in the past research rarely consider the impact of data transformation methods, simple but commonly used preprocessing techniques, on the performance and interpretability of SDP models. Therefore, in this paper, we investigate the impact of three data transformation methods (Log, Minmax, and Z-score) on the performance and interpretability of SDP models. Through empirical research on (i) six classification techniques (random forest, decision tree, logistic regression, Naive Bayes, K-nearest neighbors, and multilayer perceptron), (ii) six performance evaluation indicators (Accuracy, Precision, Recall, F1, MCC, and AUC), (iii) two interpretable methods (permutation and SHAP), (iv) two feature importance measures (Top-k feature rank overlap and difference), and (v) three datasets (Promise, Relink, and AEEEM), our results show that the data transformation methods can significantly improve the performance of the SDP models and greatly affect the variation of the most important features. Specifically, the impact of data transformation methods on the performance and interpretability of SDP models depends on the classification techniques and evaluation indicators. We observe that log transformation improves NB model performance by 7%–61% on the other five indicators with a 5% drop in Precision. Minmax and Z-score transformation improves NB model performance by 2%–9% across all indicators. However, all three transformation methods lead to substantial changes in the Top-5 important feature ranks, with differences exceeding 2 in 40%–80% of cases (detailed results available in the main content). Based on our findings, we recommend that (1) considering the impact of data transformation methods on model performance and interpretability when designing SDP approaches as transformations can improve model accuracy, and potentially obscure important features, which lead to challenges in interpretation, (2) conducting comparative experiments with and without the transformations to validate the effectiveness of proposed methods which are designed to improve the prediction performance, and (3) tracking changes in the most important features before and after applying data transformation methods to ensure precise and traceable interpretability conclusions to gain insights. Our study reminds researchers and practitioners of the need for comprehensive considerations even when using other similar simple data processing methods.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Computer Graphics and Computer-Aided Design

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3