A novel image‐orientation feature extraction method for partial discharges
Author:
Affiliation:
1. Department of Electrical Engineering Shanghai Jiao Tong University Shanghai China
2. Department of Light Sources and illuminating Engineering Fudan University Shanghai China
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/gtd2.12356
Reference21 articles.
1. Condition monitoring based on partial discharge diagnostics using machine learning methods: a comprehensive state‐of‐the‐art review;Lu S.;IEEE Trans. Dielect. Elect. Insul.,2020
2. Research on a practical de‐noising method and the characterization of partial discharge UHF signals;Wang Y.;IEEE Trans. Dielect. Elect. Insul.,2014
3. A new image‐oriented feature extraction method for partial discharges;Wang K.;IEEE Trans. Dielect. Elect. Insul.,2015
4. A convolutional neural network‐based deep learning methodology for recognition of partial discharge patterns from high‐voltage cables;Peng X.;IEEE Trans. Power Deliver.,2019
5. Random forest based optimal feature selection for partial discharge pattern recognition in HV cables;Peng X.;IEEE Trans. Power Deliver.,2019
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Intelligent extraction method of ethnic minority decorative patterns in Northeast China based on GABRS algorithm;Entertainment Computing;2024-09
2. Partial Discharge Source Classification in Power Transformers: A Systematic Literature Review;Applied Sciences;2024-07-12
3. Typical Defect Study of HVAC Power Cable Through Distortion Analysis of Grounding Current;2024 IEEE 5th International Conference on Dielectrics (ICD);2024-06-30
4. Application Analysis of Music Video Retrieval Technology Based on Dynamic Programming in Piano Performance Teaching;Journal of Information & Knowledge Management;2024-06-13
5. Defect Identification of XLPE Power Cable Using Harmonic Visualized Characteristics of Grounding Current;Electronics;2024-03-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3