Affiliation:
1. College of Communication and Electronic Engineering Qiqihar University Qiqihar China
2. College of Information and Communication Engineering Dalian Nationalities University Dalian China
Abstract
AbstractIn the past, convolutional neural network (CNN) has become one of the most popular deep learning frameworks, and has been widely used in Hyperspectral image classification tasks. Convolution (Conv) in CNN uses filter weights to extract features in local receiving domain, and the weight parameters are shared globally, which more focus on the high‐frequency information of the image. Different from Conv, Transformer can obtain the long‐term dependence between long‐distance features through modelling, and adaptively focus on different regions. In addition, Transformer is considered as a low‐pass filter, which more focuses on the low‐frequency information of the image. Considering the complementary characteristics of Conv and Transformer, the two modes can be integrated for full feature extraction. In addition, the most important image features correspond to the discrimination region, while the secondary image features represent important but easily ignored regions, which are also conducive to the classification of HSIs. In this study, a complementary integrated Transformer network (CITNet) for hyperspectral image classification is proposed. Firstly, three‐dimensional convolution (Conv3D) and two‐dimensional convolution (Conv2D) are utilised to extract the shallow semantic information of the image. In order to enhance the secondary features, a channel Gaussian modulation attention module is proposed, which is embedded between Conv3D and Conv2D. This module can not only enhance secondary features, but suppress the most important and least important features. Then, considering the different and complementary characteristics of Conv and Transformer, a complementary integrated Transformer module is designed. Finally, through a large number of experiments, this study evaluates the classification performance of CITNet and several state‐of‐the‐art networks on five common datasets. The experimental results show that compared with these classification networks, CITNet can provide better classification performance.
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Information Systems
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献