A privacy‐preserving method for publishing data with multiple sensitive attributes

Author:

Yi Tong1ORCID,Shi Minyong2,Shang Wenqian2,Zhu Haibin3ORCID

Affiliation:

1. School of Computer Science and Engineering Guangxi Normal University Guilin China

2. School of Computer Science Communication University of China Beijing China

3. Department of Computer Science and Mathematics Nipissing University North Bay Ontario Canada

Abstract

AbstractThe overgeneralisation may happen because most studies on data publishing for multiple sensitive attributes (SAs) have not considered the personalised privacy requirement. Furthermore, sensitive information disclosure may also be caused by these personalised requirements. To address the matter, this article develops a personalised data publishing method for multiple SAs. According to the requirements of individuals, the new method partitions SAs values into two categories: private values and public values, and breaks the association between them for privacy guarantees. For the private values, this paper takes the process of anonymisation, while the public values are released without this process. An algorithm is designed to achieve the privacy mode, where the selectivity is determined by the sensitive value frequency and undesirable objects. The experimental results show that the proposed method can provide more information utility when compared with previous methods. The theoretic analyses and experiments also indicate that the privacy can be guaranteed even though the public values are known to an adversary. The overgeneralisation and privacy breach caused by the personalised requirement can be avoided by the new method.

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3