OSAP‐Loss: Efficient optimization of average precision via involving samples after positive ones towards remote sensing image retrieval

Author:

Yuan Xin12ORCID,Xu Xin12ORCID,Wang Xiao12ORCID,Zhang Kai12ORCID,Liao Liang3ORCID,Wang Zheng4ORCID,Lin Chia‐Wen5ORCID

Affiliation:

1. School of Computer Science and Technology Wuhan University of Science and Technology Wuhan China

2. Hubei Province Key Laboratory of Intelligent Information Processing and Real‐time Industrial System Wuhan University of Science and Technology Wuhan China

3. Nanyang Technological University Singapore Singapore

4. School of Computer Science Wuhan University Wuhan China

5. Department of Electrical Engineering Industrial Technology Research Institute National Tsing Hua University Hsinchu China

Abstract

AbstractIn existing remote sensing image retrieval (RSIR) datasets, the number of images among different classes varies dramatically, which leads to a severe class imbalance problem. Some studies propose to train the model with the ranking‐based metric (e.g., average precision [AP]), because AP is robust to class imbalance. However, current AP‐based methods overlook an important issue: only optimising samples ranking before each positive sample, which is limited by the definition of AP and is prone to local optimum. To achieve global optimisation of AP, a novel method, namely Optimising Samples after positive ones & AP loss (OSAP‐Loss) is proposed in this study. Specifically, a novel superior ranking function is designed to make the AP loss differentiable while providing a tighter upper bound. Then, a novel loss called Optimising Samples after Positive ones (OSP) loss is proposed to involve all positive and negative samples ranking after each positive one and to provide a more flexible optimisation strategy for each sample. Finally, a graphics processing unit memory‐free mechanism is developed to thoroughly address the non‐decomposability of AP optimisation. Extensive experimental results on RSIR as well as conventional image retrieval datasets show the superiority and competitive performance of OSAP‐Loss compared to the state‐of‐the‐art.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3