A novel observation points‐based positive‐unlabeled learning algorithm

Author:

He Yulin12ORCID,Li Xu2,Zhang Manjing1,Fournier‐Viger Philippe2,Huang Joshua Zhexue12,Salloum Salman3

Affiliation:

1. Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) Shenzhen China

2. College of Computer Science and Software Engineering Shenzhen University Shenzhen China

3. School of Computing National University of Singapore Singapore Singapore

Abstract

AbstractIn this study, an observation points‐based positive‐unlabeled learning algorithm (hence called OP‐PUL) is proposed to deal with positive‐unlabeled learning (PUL) tasks by judiciously assigning highly credible labels to unlabeled samples. The proposed OP‐PUL algorithm has three components. First, an observation point classifier ensemble (OPCE) algorithm is constructed to divide unlabeled samples into two categories, which are temporary positive and permanent negative samples. Second, a temporary OPC (TOPC) is trained based on the combination of original positive samples and permanent negative samples and then the permanent positive samples that are correctly classified with TOPC are retained from the temporary positive samples. Third, a permanent OPC (POPC) is finally trained based on the combination of original positive samples, permanent positive samples and permanent negative samples. An exhaustive experimental evaluation is conducted to validate the feasibility, rationality and effectiveness of the OP‐PUL algorithm, using 30 benchmark PU data sets. Results show that (1) the OP‐PUL algorithm is stable and robust as unlabeled samples and positive samples are increased in unlabeled data sets and (2) the permanent positive samples have a consistent probability distribution with the original positive samples. Moreover, a statistical analysis reveals that POPC in the OP‐PUL algorithm can yield better PUL performances on the 30 data sets in comparison with four well‐known PUL algorithms. This demonstrates that OP‐PUL is a viable algorithm to deal with PUL tasks.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3