Machine learning approach of multi‐RAT selection for travelling users in 5G NSA networks

Author:

Salau Nurudeen O.1ORCID,Manzoor Sanaullah1,Shakir Muhammad Z.1

Affiliation:

1. School of Computing, Engineering and Physical Sciences University of the West of Scotland Paisley Scotland UK

Abstract

AbstractThe rapid increment of mobile device usage and the corresponding huge data volume generated afterwards, necessitated the utilisation of the 5G network spectrum. This is deployed today in terrestrial communication in a non‐stand‐alone (NSA) architectural mode; where 5G networks are supported by 4G LTE networks. Hence, the current 5G implementation with the gargantuan number of mobile subscribers, poses challenges to the choice of network Radio Access Technology (RAT) selection between 4G and 5G networks, among available multiple base‐stations to mobile (travelling) users, with respect to their location, bandwidth requirement, and mobility style. Hence, to address the scenario presented above, the authors record live signal measurements of 4G and 5G networks by a travelling user, that transversed multiple 5G NSA base stations. RAT selection implementations were carried out with support vector machine (SVM), deep neural network (DNN), and eXtreme Gradient Boosting (XGBoost) algorithms to select an appropriate RAT between 4G and 5G RATs, for effective resource allocation for travelling users’ requirements. Evaluation of results with standard classification metrics shows XGBoost with overall outstanding accuracy performance at 99.64%.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3