Enhanced multivariate singular spectrum analysis‐based network traffic forecasting for real time industrial IoT applications

Author:

Isravel Deva Priya1,Silas Salaja1,Kathrine Jaspher1,Rajsingh Elijah Blessing1,J Andrew2ORCID

Affiliation:

1. Department of Computer Science and Engineering Karunya Institute of Technology and Sciences Coimbatore India

2. Department of Computer Science and Engineering Manipal Institute of Technology Manipal Academy of Higher Education Manipal Karnataka India

Abstract

AbstractIndustrial IoT (IIoT) applications are widely used in multiple use cases to automate the industrial environment. Industry 4.0 presents challenges in numerous areas, including heterogeneous data, efficient data sensing and collection, real‐time data processing, and higher request arrival rates, due to the massive amount of industrial data. Building a time‐sensitive network that supports the voluminous and dynamic IoT traffic from heterogeneous applications is complex. Therefore, the authors provide insights into the challenges of industrial networks and propose a strategy for enhanced traffic management. An efficient multivariate forecasting model that adapts the Multivariate Singular Spectrum Analysis is employed for an SDN‐based IIoT network. The proposed method considers multiple traffic flow parameters, such as packet sent and received, flow bytes sent and received, source rate, round trip time, jitter, packet arrival rate and flow duration to predict future flows. The experimental results show that the proposed method can effectively predict by contemplating every possible variation in the observed samples and predict average load, delay, inter‐packet arrival rate and source sending rate with improved accuracy. The forecast results shows reduced error estimation when compared with existing methods with Mean Absolute Percentage Error of 1.64%, Mean Squared Error of 11.99, Root Mean Squared Error of 3.46 and Mean Absolute Error of 2.63.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3