Common criteria for security evaluation and malicious intrusion detection mechanism of dam supervisory control and data acquisition system

Author:

Lu Kuan‐Chu1,Liu I‐Hsien1ORCID,Liu Zong‐Chao1,Li Jung‐Shian1ORCID

Affiliation:

1. Department of Electrical Engineering Institute of Computer and Communication Engineering National Cheng Kung University Tainan Taiwan

Abstract

AbstractSupervisory control and data acquisition (SCADA) systems are vital in monitoring and controlling industrial processes through the web. However, while such systems result in lower costs, greater utilisation efficiency, and improved reliability, they are vulnerable to cyberattacks, with consequences ranging from the inconvenience and minor disruption to severe physical damage and even loss of life. The authors evaluate the security of the Dam system in the form of Common Criteria, develop safety goals to improve this safety, and focus on threats and risks to the dam SCADA system. Finally proposes an anomaly‐based machine‐learning framework for detecting malicious network attacks in the SCADA system of a dam. Three unsupervised classification algorithms are considered: hierarchical clustering, local outlier factor, and isolation forest. It is shown that the hierarchical clustering algorithm achieves the highest precision and F‐score of the three algorithms. Overall, the results confirm the effectiveness of anomaly‐based detection algorithms in enhancing the robustness of SCADA systems toward malicious attacks. At the same time, it complies with the security objectives of Common Criteria, achieving the safety and protection of the dam.

Funder

National Science and Technology Council

Publisher

Institution of Engineering and Technology (IET)

Reference38 articles.

1. Economical and Balanced Energy Usage in the Smart Home Infrastructure: A Tutorial and New Results

2. Stuxnet: Dissecting a Cyberwarfare Weapon

3. Analysis of the cyber attack on the Ukrainian power grid;Case D.U.;Electr. Inf. Shar. Anal. Cent.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3