Advancing smart tourism destinations: A case study using bidirectional encoder representations from transformers‐based occupancy predictions in torrevieja (Spain)

Author:

Giménez Manuel José Ginés1ORCID,Giner Pérez de Lucia José1,Celdrán Bernabeu Marco Antonio2,Mazón López José Norberto3,Cano Escribá Juan Carlos1,Cecilia Canales José María1

Affiliation:

1. Department of Computer Engineering (DISCA) Universitat Politècnica de València Valencia Spain

2. University Laboratory for Smart Tourism of Torrevieja University of Alicante Alicante Spain

3. University Institute of Computer Research (IUII) University of Alicante Alicante Spain

Abstract

AbstractTourism represents a crucial socio‐economic pillar globally, yet the multifaceted challenges it poses necessitate innovative management approaches. The paradigm of smart tourism harnesses advanced data analytics tools to promote both profitability and sustainability in tourist destinations, leading to new levels of destination smartness. Accurate tourist occupancy prediction, particularly in areas dominated by second‐home accommodations where traditional hospitality data may be insufficient, plays a key role in optimising tourism management. To address this data gap, our prior research employed ARIMA modelling on Airbnb booking time series and analysed tourism‐related Twitter conversations to forecast occupancy levels in Torrevieja (Alicante); a prominent second‐home tourism destination in Southeastern Spain. In this extended study, we delve deeper into the realm of social sensing by utilising bidirectional encoder representations from transformers (BERT) for topic modelling. Our methodology involves the processing and analysis of Twitter data to identify prominent themes related to Torrevieja. The findings not only reveal nuanced perceptions and discussions about the destination but also underscore the effectiveness of BERT in capturing intricate topic dynamics. Importantly, this work highlights how the alignment of specific topics with booking patterns can further enhance predictive accuracy for tourist occupancy, presenting a robust toolkit for stakeholders in the tourism sector.

Funder

Consejería de Economía y Hacienda

Ministerio de Ciencia e Innovación

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3