An approach for selecting optimal locations for electric vehicle solar charging stations

Author:

Hisoglu Sinem1,Tuominen Anu1,Huovila Aapo1ORCID

Affiliation:

1. VTT Technical Research Centre of Finland Ltd Espoo Finland

Abstract

AbstractElectric vehicles (EVs) are seen as a solution to reduce transport‐related greenhouse gas emissions. A major obstacle to wider adoption is the insufficient amount of charging stations. Furthermore, supplying charging stations with renewable energy is still in its infancy. The selection of optimal locations for charging stations is important to best serve the users and maximise the possibilities of renewable energy use. Given this background, this study developed an approach for Solar‐supplied Electric Vehicle Charging Station (EVCS) location selection by combining EVCS and solar farm site selection studies using Geographical Information System (GIS) and Analytic Hierarchy Process (AHP). The study determined the most important criteria for site selection based on previous solar and EVCS site selection studies and expert opinions. The 10 most important criteria according to the survey results were: availability of power, solar energy potential, solar panel installation cost, number of EVs, operation and management costs, land cost, distance from roads/highways, distance from current EVCSs, industrial capability of installation and distance to high population density centres. The importance weights of these criteria were assigned using AHP method. The findings are expected to benefit urban planners, decision‐makers, and researchers designing solar‐supplied EV charging infrastructure.

Funder

H2020 Energy

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Electrical and Electronic Engineering,Computer Networks and Communications,Computer Science Applications,Urban Studies,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3