A modulized lane‐follower for driverless vehicles using multi‐frame

Author:

Luan Honggang1ORCID,Gao Yang1,Wang Zhenxu1ORCID,Liu Jinyuan1,Wang Shuqi1,Zhao Yihui2,Wang Junchao3

Affiliation:

1. College of Automobile Chang'An University Xi'an Xi'an China

2. Xi'an Coal Mining Machinery Co., Ltd Xi'an China

3. College of Microelectronics and Communication Engineering Chongqing University Chongqing China

Abstract

AbstractAs a fundamental function, lane following plays an important role for driverless vehicles. Unfortunately, lane followers generally confront great difficulty in lane line missed situations caused by vague line, shadows etc. However, for most lane line missed situation, clues of the line may be hidden in prior view of it. Consequently, a lane follower called UNL Lane Follower, which contains two deep learning network modules is proposed. The first module is a lane line detection model called UNET_CLB. Here, the sequence of image frames is utilised rather than only the current frame to deal with the missing lane lines. The second module is a lane‐following model called LSTM_DTS, which combines a deep learning attention mechanism (temporal attention network and spatial attention network) with a recurrent neural network. As a result, the proposed UNL Lane Follower produces smoother driving behaviour, especially when a lane line is temporally missed. For better explain ability, the role of each part of the network structure is analysed and explained intuitively. As a modularised network, the UNET_CLB is firstly trained and tested on the TuSimple dataset and CULane dataset. The LSTM_DTS lane follow is then trained and tested on our actual lane following dataset. Finally, the UNL Lane Follower is trained and tested as a whole in a simulation running on Webots, after importing the weight of the two modules trained separately. All testing results showed that the UNL Lane Follower can provide better robustness and accuracy for lane line following mission in the line missed situations.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3