Optimisation of deep neural network model using Reptile meta learning approach

Author:

Kulkarni Uday1,S M Meena1,Hallyal Raghavendra1,Sulibhavi Prasanna1,G Sunil V.1,Guggari Shankru1,Shanbhag Akshay R.1ORCID

Affiliation:

1. School of Computer Science and Engineering KLE Technological University Hubballi Karnataka India

Abstract

AbstractThe artificial intelligence (AI) within the last decade has experienced a rapid development and has attained power to simulate human‐thinking in various situations. When the deep neural networks (DNNs) are trained with huge dataset and high computational resources it can bring out great outcomes. But the learning process of DNN is very much complicated and time‐consuming. In various circumstances, where there is a data‐scarcity, the algorithms are not capable of learning tasks at a faster rate and perform nearer to that of human intelligence. With advancements in deep meta‐learning in several research studies, this problem has been dealt. Meta‐learning has outspread range of applications where the meta‐data (data about data) of the either tasks, data or the models which were previously trained can be employed to optimise the learning. So in order to get an insight of all existing meta‐learning approaches for DNN model optimisation, the authors performed survey introducing different meta‐learning techniques and also the current optimisation‐based approaches, their merits and open challenges. In this research, the Reptile meta‐learning algorithm was chosen for the experiment. As Reptile uses first‐order derivatives during optimisation process, hence making it feasible to solve optimisation problems. The authors achieved a 5% increase in accuracy with the proposed version of Reptile meta‐learning algorithm.

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition,Experimental and Cognitive Psychology

Reference23 articles.

1. A Brief Introduction To Artificial Intelligence

2. Wlodzislaw D. Grudzinski K.:Meta‐learning via Search Combined with Parameter Optimization vol.5 pp.87–100.Department of Informatics Nicholas Copernicus University Grudzüldzka Torun Poland.https://doi.org/10.1007/978‐3‐7908‐1777‐52

3. https://meta‐learning.fastforwardlabs.com/

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3