Outlier detection based energy efficient and reliable routing protocol using deep learning algorithm

Author:

Jasmine Lizy P.1ORCID,Chenthalir Indra N.2

Affiliation:

1. Department of Computer Science S.T Hindu College, Nagercoil, Affiliated to Manonmaniam Sundaranar University Tirunelveli Tamil Nadu India

2. Department of Computer Science S.T Hindu College Nagercoil Tamil Nadu India

Abstract

AbstractWireless sensor network have also played a vital role in the observation and management of agricultural land in terms of climate, water usage, crops, etc. Due to the open communication system and low battery power of sensors, the agricultural sector still faces issues with energy consumption, information forwarding, and privacy. Thus, an energy‐efficient routing during transmission in WSN‐based smart agriculture is suggested in this study applying a feed‐forward neural network to detect outliers. Outlier identification, CH‐selection, and Relay Node (RN) selection are the three phases of this suggested method. Outlier detection is performed in the deployed nodes for categorises attack nodes from the normal nodes. CH‐selection is performed using a chaotic moth‐flame optimization technique according to distance, node degree, centrality factor and residual energy level, these parameters determine which node will become a Cluster Head. Then reliable routing protocol is designed using NB‐based probability method for RN selection. MATLAB software is used to test the proposed Outlier Detection based Energy Efficient and Reliable Routing Protocol and verify its performance. The effectiveness of the proposed‐model is tested with some prior wireless sensor network routing protocols environment‐fusion multipath routing protocol, dynamic Multi‐hop Energy Efficient Routing Protocol, SEMantic CLustering, and Reliable and energy efficient routing protocol. Outlier Detection based Energy Efficient and Reliable Routing Protocol algorithm attained a 0.91 (%)Packet Delivery ratio, 0.08% of packet loss, 0.91% of Average residual energy, 2.8 (Mbps) throughput, and 26 (sec) Delay.

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3