Experimental investigation of BIPV/T application in winter season under Şanlıurfa's meteorological conditions

Author:

Demir Yusuf Can1ORCID,Aktacir Mehmet Azmi2ORCID

Affiliation:

1. Construction Works and Technical Department Kocaeli University, Umuttepe Campus İzmit Turkey

2. Department of Mechanical Engineering Engineering Faculty Harran University, Osmanbey Campus Haliliye Turkey

Abstract

AbstractConsidering that nearly 39% of the total CO2 emission released into the atmosphere today are thought to be due to the energy consumed by buildings, the importance of taking measures through buildings to combat global warming is evident. Therefore, the concept of nearly zero‐energy buildings (NZEB) is come to the forefront. Building integrated photovoltaic thermal (BIPV/T) systems are used to enable buildings to generate their own energy. However, buildings have limited facade and roof areas required for BIPV/T systems. Therefore, in this study, various configurations of bifacial (double‐sided) and monofacial (single‐sided) panels were compared to investigate ways to enhance the efficiency of BIPV/T systems. Different air flow velocities and varying air gap distances were tested for both panel types. By placing a reflective surface on the wall behind the bifacial panel, the electrical efficiency of the bifacial panel was increased and proven through PVsyst analysis. Both panels provided maximum heat efficiency at the shortest air gap distance under high air flow conditions. In addition, it was shown in both the experimental setup and Comsol CFD analysis that it provides significant benefit in the thermal energy load of the building when heating the interior environment in winter. In terms of electrical power production surplus, the bifacial panel outperformed the monofacial panel in all configurations, with a minimum advantage of 8.33% and a maximum of 12.73%. Additionally, the maximum electrical efficiency was obtained from the bifacial panel in configurations with the longest air gap distance. Using the bifacial panel in the BIPV/T system with the shortest air gap distance during the heating season and the longest air gap distance during other seasons can provide the highest efficiency for the building throughout the year.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3