Power prediction of regional distributed photovoltaic clusters with incomplete information based on improved weighted fusion and transfer learning

Author:

Zheng Wanting12ORCID,Xiao Hao12ORCID,Zhou Hai3,Zhang Heng4,Gao Wei4,Pei Wei12

Affiliation:

1. Institute of Electrical Engineering Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

3. China Electric Power Research Institute Nanjing China

4. State Grid Shandong Electric Power Company Jinan China

Abstract

AbstractThe rapid expansion of low‐voltage distributed photovoltaic (PV) systems with decentralized layouts poses significant data collection challenges. The scarcity of data amplifies prediction complexities, affecting the operational security and stability of distribution networks. To enhance predictive accuracy for distributed regional PV power generation, including unmonitored low‐voltage systems, this paper proposes a novel prediction approach that combines weight optimization and transfer learning. Firstly, to more accurately extrapolate from neighbouring monitored PV to estimate unmonitored PV outputs, a novel SSA‐MLP‐XGBoost model is proposed for monitored PV power plants, in which the hyperparameters of multilayer perceptron (MLP) and (extreme gradient boosting) XGBoost models are fine‐tuned using the sparrow search algorithm (SSA), and the optimized models are synergistically integrated to heighten prediction precision for monitored plants. Secondly, based on the predicted power curves of monitored PV power plants, a weight optimization model is presented to optimize the combined weights between unmonitored and monitored power stations. Furthermore, the power generation model from monitored facilities is transplanted to unmonitored plants for power generation estimation. Ultimately, the authors combine the weight optimization and transfer learning model to get more accurate and robust model. Validation across three regional distributed photovoltaic clusters demonstrates a noteworthy improvement in prediction accuracy—20%, 7.5%, and 25% for the respective clusters compared to the existing methods.

Funder

National Key Research and Development Program of China

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3