Inter‐day energy storage expansion framework against extreme wind droughts based on extreme value theory and deep generation models

Author:

Zhu Yuhong1ORCID,Dan Yangqing2,Wang Lei2,Yan Lei1ORCID,Zhou Yongzhi1,Wei Wei1

Affiliation:

1. College of Electrical Engineering Zhejiang University Hangzhou Zhejiang China

2. Economic & Technology Research Institute, State Grid Zhejiang Electric Power Company Hangzhou Zhejiang China

Abstract

AbstractThe worldwide occurrence of wind droughts challenges the balance of power systems between energy production and consumption. Expanding inter‐day energy storage serves as a strategic solution, yet optimizing its capacity depends on accurately modeling future renewable energy uncertainties to avoid over‐ or under‐investment. Existing approaches that use the historical extreme scenario set (HESS) to represent future conditions are contentious due to potential inadequacies in forecasting future extreme scenarios (ESs), including those on a decadal or centennial scale. This study addresses the issue by proposing an advanced energy storage expansion framework that leverages Extreme Value Theory (EVT) and a novel Deep Generative Model, namely the Diffusion Model. To model the extremes in a principled way, this work leverages EVT to establish a severity‐probability mapping for wind droughts, guiding the training process of the Diffusion Model. This model excels in generating ESs that accurately reflect the distribution of real‐world extremes, thereby significantly enhancing the predictive capacity of HESS. Case studies on a real‐world power system confirm the method's capacity to generate high‐quality ESs, encompassing the most severe historical wind droughts not included in the training dataset, thereby facilitating resilient energy storage expansion against unforeseen extremes.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3