Lie Detection Technology of Bimodal Feature Fusion Based on Domain Adversarial Neural Networks

Author:

Zhou Yan1ORCID,Bu Feng1ORCID

Affiliation:

1. Suzhou Vocational University, Suzhou, China

Abstract

In the domain of lie detection, a common challenge arises from the dissimilar distributions of training and testing datasets. This causes a model mismatch, leading to a performance decline of the pretrained deep learning model. To solve this problem, we propose a lie detection technique based on a domain adversarial neural network employing a dual-mode state feature. First, a deep learning neural network was used as a feature extractor to isolate speech and facial expression features exhibited by the liars. The data distributions of the source and target domain signals must be aligned. Second, a domain-antagonistic transfer-learning mechanism is introduced to build a neural network. The objective is to facilitate feature migration from the training to the testing domain, that is, the migration of lie-related features from the source to the target domain. This method results in improved lie detection accuracy. Simulations conducted on two professional lying databases with different distributions show the superiority of the detection rate of the proposed method compared to an unimodal feature detection algorithm. The maximum improvement in detection rate was 23.3% compared to the traditional neural network-based detection method. Therefore, the proposed method can learn features unrelated to domain categories, effectively mitigating the problem posed by different distributions in the training and testing of lying data.

Funder

Natural Science Research of Jiangsu Higher Education Institutions of China

Publisher

Institution of Engineering and Technology (IET)

Reference39 articles.

1. Research and analysis of speech lie detection technology;Y. Zhi;Guangdong Public Security Technology,2021

2. Research status and prospects of speech lie detection technology;Z. Li;Data Collection and Processing,2017

3. Identifying the Optimal Features in Multimodal Deception Detection

4. A Novel Hybrid Network Model Based on Attentional Multi-Feature Fusion for Deception Detection

5. A Comparative Study of Supervised Machine Learning Techniques for Deceptive Review Identification Using Linguistic Inquiry and Word Count

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3