Affiliation:
1. Department of Electrical & Electronic Engineering Rajshahi University of Engineering & Technology Rajshahi Bangladesh
2. Department of Electronic & Electrical Engineering Hongik University Seoul Republic of Korea
3. School of Electrical and Data Engineering University of Technology Sydney Sydney New South Wales Australia
Abstract
AbstractTransmission lines, the core part of the transmission and distribution system in the smart grid, require effective, efficient, and reliable protective measures against faults to avoid severe damage to physical infrastructure and financial losses. Due to their growing popularity, machine learning models are used in fault detection and classification, whose performances can be severely affected by cyber‐attacks due to their data dependency, posing a critical concern. Hence, this paper introduces false data injection attacks to address the vulnerability of machine learning‐based fault detectors and classifiers. A comparative study of 9 detection models and 6 classification models under normal conditions and during a combination of two models of false data injection attacks is presented to evaluate the severity of cyber‐attacks. Experimental results show that highly accurate models in normal conditions are more susceptible to cyber‐attacks, with up to 69% and 28% degradations in accuracy for fault detectors and classifiers, respectively. Furthermore, the detection models are found to be more vulnerable to cyber‐attacks than the classification models. With no robust detectors and classifiers being found, this work addresses the importance of developing attack‐resilient fault detection and classification schemes considering their academic and industrial significance.
Publisher
Institution of Engineering and Technology (IET)