Affiliation:
1. Academy of Military Science Beijing China
2. National Innovation Institute of Defense Technology Beijing China
Abstract
AbstractHigh‐dimensional imbalanced multi‐classification problems (HDIMCPs) occur frequently in engineering applications such as medical detection, item classification, and email classification. However, there is a paucity of research in the academic community on this topic. This paper proposes an evolutionary algorithm‐based classification method for HDIMCPs, named HIMALO (high‐dimensional imbalanced multi‐classification method based on ant lion optimizer). HIMALO proposes a new individual initialization strategy that replaces the random initialization of the ant lion optimizer with Fuch chaos. Then, it encodes individuals using concatenated sample features and base classifier weights, optimizes these features and weights concurrently during the iteration process. Additionally, a multi‐classification strategy, union one versus many, that combines one versus all and one‐against‐higher‐order is proposed. Numerous experiments are conducted to prove the superior classification performance and stability of HIMALO when compared with other algorithms.
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献