A high‐efficient information extraction mechanism based on complex convolution for wireless signal recognition

Author:

Yang Ying1ORCID,Zhu Lidong1

Affiliation:

1. National Key Laboratory of Wireless Communications University of Electronic Science and Technology of China Chengdu China

Abstract

AbstractIn the integration of terrestrial and non‐terrestrial networks, massive access to wireless signals poses a significant threat to communication systems. However, existing signal recognition models cannot accurately identify signals with low signal‐to‐noise ratios (SNRs). To alleviate this issue, this paper proposes a high‐efficient information extraction mechanism based on complex convolution. Specifically, complex convolution and complex max‐pooling operations have been integrated into a real‐value network to efficiently acquire anti‐noise information. The extracted features contain both in‐phase and quadrature (IQ) structure information and complex relationship information. Experiments on the public RML2016.04C dataset indicated that the model exhibits rapid convergence and superior noise‐robustness under low SNRs. When SNR =0 dB, the model outperforms the suboptimal model by 4.05%. Furthermore, our model demonstrates excellent generalization performance at high SNRs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3