Smart feature extraction and classification of hyperspectral images based on convolutional neural networks
Author:
Affiliation:
1. SETIT LaboratoryISITCom, University of SousseTunisia
2. IMT AtlantiqueISITCom, University of SousseTunisia
3. SETIT LaboratoryENIS, University of SfaxTunisia
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-ipr.2019.1282
Reference32 articles.
1. HaidarA. VermaB. HaidarR.: ‘A swarm based optimization of the xgboost parameters’
2. Fast and Efficient Limited Data Hyperspectral Remote Sensing Image Classification via GMM-Based Synthetic Samples
3. Analysis of various optimizers on deep convolutional neural network model in the application of hyperspectral remote sensing image classification
4. Naive gabor networks for hyperspectral image classification;Liu C.;IEEE Trans. Neural Netw. Learn. Syst.,2020
5. Gradient-based learning applied to document recognition
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Continuous Wavelet Transform Peak-Seeking Attention Mechanism Conventional Neural Network: A Lightweight Feature Extraction Network with Attention Mechanism Based on the Continuous Wave Transform Peak-Seeking Method for Aero-Engine Hot Jet Fourier Transform Infrared Classification;Remote Sensing;2024-08-22
2. A Deep Learning-Based Multitasking Model for Hyperspectral Image Analysis using Novel TAIGA Dataset;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07
3. Hyperspectral image classification using a new deep learning model based on pseudo-3D block and depth separable 2D–3D convolution;Engineering Applications of Artificial Intelligence;2024-04
4. DESSA-Net Model: Hyperspectral Image Classification Using an Entropy Filter With Spatial and Spectral Attention Modules on DeepNet;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024
5. A comparative evaluation of deep convolutional neural network and deep neural network-based land use/land cover classifications of mining regions using fused multi-sensor satellite data;Advances in Space Research;2023-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3