Multi‐dimensional data modelling of video image action recognition and motion capture in deep learning framework

Author:

Gao Peijun1,Zhao Dan2,Chen Xuanang1

Affiliation:

1. School of Physical Culture, Jiujiang UniversityJiujiang332005People's Republic of China

2. Jiujiang Maternal and Child Health HospitalJiujiang322000People's Republic of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

Reference19 articles.

1. 3D skeleton‐based action recognition by representing motion capture sequences as 2D‐RGB images;Laraba S.;Comput. Animat. & Virtual Worlds,2017

2. A graph‐based approach for detecting common actions in motion capture data and videos;Panagiotakis C.;Pattern Recognit.,2018

3. Dynamic time warping in classification and selection of motion capture data;Switonski A.;Multidimens. Syst. Signal Process.,2018

4. Keep it simple and sparse: real‐time action recognition;Fanello S.R.;J. Mach. Learn. Res.,2017

5. Human Actions Analysis: Templates Generation, Matching and Visualization Applied to Motion Capture of Highly-Skilled Karate Athletes

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid YOLOv3 and ReID intelligent identification statistical model for people flow in public places;Scientific Reports;2024-06-25

2. Prevention and control tracking system based on 3D face recognition;Journal of Computational Methods in Sciences and Engineering;2024-06-17

3. Constructing and applying a neural-network-based architectural landscape evaluation model;Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction;2024-05-21

4. Action capture and VR interactive system for online experimental teaching;Entertainment Computing;2024-05

5. Application of Image Recognition Based on Deep Learning in Visual Communication Design;2024 International Conference on Electrical Drives, Power Electronics & Engineering (EDPEE);2024-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3