Affiliation:
1. School of Materials and Energy Southwest University Chongqing China
2. Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
3. Department of Clinical Laboratory University‐Town Hospital of Chongqing Medical University Chongqing China
Abstract
AbstractBone implantation surgery is often accompanied by bacterial infection, resulting in infectious bone non‐union, pathological fracture and other serious consequences, which will aggravate the pain of patients. A non‐antibiotic coating consisting of sodium dodecyl sulphate (SDS) and levulinic acid (LA) with different concentrations was prepared by the authors on the zinc–aluminium alloy (ZA6‐1) using a wet chemistry treatment for orthopaedic application. The influence of SDS/LA concentrations on the surface morphology, composition and performance of the developed coating was investigated. The results showed that as‐prepared coating on a zinc alloy surface could improve the substrate's corrosion resistance and increase the degradation rate from 0.82 to 19.70 μm/year upon raising the SDS/LA concentration. Furthermore, higher hydrophilicity (<14°), better cell proliferation (>100%) and morphology, as well as good cell adhesion and differentiation (ALP >95% for 7 days) were observed on coated zinc alloys. The increased SDS/LA concentration slightly weakens the biocompatibility and enhances the antibacterial performance of coated zinc alloys due to the synergistic effect of SDS/LA. Overall, the coating comprising 6 wt.% SDS and 9 wt.% LA showed excellent antibacterial action with a high level of biocompatibility, confirming its potential application for orthopaedic implants.
Funder
National Natural Science Foundation of China
Venture and Innovation Support Program for Chongqing Overseas Returnees
Publisher
Institution of Engineering and Technology (IET)