An EKF‐SVM machine learning‐based approach for fault detection and classification in three‐phase power transformers
Author:
Affiliation:
1. Department of Control and Power Engineering Shiraz University Shiraz Iran
2. Department of Communication and Electronic Engineering Shiraz University Shiraz Iran
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/smt2.12015
Reference33 articles.
1. Feature extraction of power transformer vibration signals based on empirical wavelet transform and multiscale entropy;Zhao M.;IET Sci. Meas. Technol.,2017
2. Power transformer differential protection based on least squares algorithm with extended kernel;Naseri F.;IET Sci. Meas. Technol.,2019
3. Fast detection and compensation of current transformer saturation using extended Kalman filter;Naseri F.;IEEE Trans. Power Delivery,2019
4. A wavelet-based technique for discrimination between faults and magnetizing inrush currents in transformers
5. Hyperbolic S-transform-based method for classification of external faults, incipient faults, inrush currents and internal faults in power transformers
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel infrared thermography image analysis for transformer condition monitoring;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-12
2. Research on automatic detection of gradual fault of high voltage electric energy metering transformer based on fuzzy rough set and whale optimization algorithm;Journal of Vibroengineering;2024-02-21
3. Research on Machine Learning Based Fault Diagnosis Methods for Power Transformers;2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology (ICCASIT);2023-10-11
4. Sensor Fusion for Power Line Sensitive Monitoring and Load State Estimation;Sensors;2023-08-14
5. Artificial Intelligence-Based Diagnosis of Hydraulic Centrifugal Pumps Using Vibration Sensor: Feature Extraction and Failure Classification;2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE);2023-06-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3