Anti‐sloshing control: Flatness‐based trajectory planning and tracking control with an integrated extended state observer

Author:

Viet Khanh Nguyen1,Duc Minh Do1,Duc Thanh Cao2,Nguyen Tung Lam1ORCID

Affiliation:

1. School of Electrical and Electronic Engineering Hanoi University of Science and Technology Hanoi Vietnam

2. Vietnam Maritime University Haiphong Vietnam

Abstract

AbstractThe phenomenon of sloshing causes a significantly negative impact on a wide range of industries. A time‐optimal flatness‐based trajectory planning and Lyapunov‐based model predictive control (LMPC) is proposed for trajectory tracking of a transmitting cylindrical container filled with liquid. Firstly, this research presents an equivalent discrete model based on a mass‐spring‐damper system. Subsequently, after the flatness of the adopted non‐linear model for 2D is established, time‐optimal trajectories are introduced. A control method called LMPC is shown to solve the problem of orbital tracking, which allows setting limits for state variables. In addition, to ensure system performance, a linear extended state observer (LESO) is integrated to cope with system uncertainties. Finally, the efficiency of the proposed approach for liquid sloshing suppression and tracking is illustrated by simulations.

Funder

Trường Đại học Bách Khoa Hà Nội

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3