Affiliation:
1. Data and System Science Lab Harvard University Cambridge Massachusetts USA
2. Bradley Department of Electrical and Computer Engineering Virginia Tech Northern Virginia Center Greater Washington D.C. Virginia USA
3. School of Engineering RMIT University Melbourne Victoria Australia
4. University of Delft, Technology, Policy and Management Department of Multi‐Actor Systems Delft The Netherlands
5. School of Electrical Engineering Southeast University Nanjing China
Abstract
AbstractSmart grids are typically modelled as cyber–physical power systems, with limited consideration given to the social aspects. Specifically, traditional power system studies tend to overlook the behaviour of stakeholders, such as end‐users. However, the impact of end‐users and their behaviour on power system operation and response to disturbances is significant, particularly with respect to demand response and distributed energy resources. Therefore, it is essential to plan and operate smart grids by taking into account both the technical and social aspects, given the crucial role of active and passive end‐users, as well as the intermittency of renewable energy sources. In order to optimize system efficiency, reliability, and resilience, it is important to consider the level of cooperation, flexibility, and other social features of various stakeholders, including consumers, prosumers, and microgrids. This article aims to address the gaps and challenges associated with modelling social behaviour in power systems, as well as the human‐centred approach for future development and validation of socio‐technical power system models. As the cyber–physical–social system of energy emerges as an important topic, it is imperative to adopt a human‐centred approach in this domain. Considering the significance of computational social science for power system applications, this article proposes a list of research topics that must be addressed to improve the reliability and resilience of power systems in terms of both operation and planning. Solving these problems could have far‐reaching implications for power systems, energy markets, community usage, and energy strategies.
Publisher
Institution of Engineering and Technology (IET)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献