Highly transferable adversarial attack against deep‐reinforcement‐learning‐based frequency control

Author:

Li Zhongwei1,Liu Yang1,Qiu Peng1,Yin Hongyan1,Wan Xu2ORCID,Sun Mingyang2

Affiliation:

1. State Grid Jinzhou Electric Power Supply Company Jinzhou China

2. Zhejiang University Hangzhou Zhejiang China

Abstract

AbstractWith the increase in inverter‐based renewable energy resources, the complexity and uncertainty of low‐carbon power systems have increased significantly. Deep reinforcement learning (DRL)–based approaches have been extensively studied for frequency control to overcome the limitations of traditional model‐based approaches. The goal of DRL‐based methods for primary frequency control is to minimise load shedding while satisfying frequency safety requirements, thereby reducing control costs. However, the vulnerabilities of DRL models pose new security threats to power systems. These threats have not been identified and addressed in the existing literature. Therefore, in this paper, a series of vulnerability assessment methods are proposed for DRL‐based frequency control with a focus on the under‐frequency load shedding (UFLS) problem. Three adversarial sample production methods are designed with different optimisation directions: Q‐value‐based FGSM (Q‐FGSM), action‐based JSMA (A‐JSMA), and state‐action‐based CW (SA‐CW). Furthermore, combining the advantages of the above three attack methods, a hybrid adversarial attack algorithm is designed, Q‐value‐state‐action‐based mix (QSA‐MIX), to significantly affect the decision process of the DRL model. In case studies of the IEEE39 bus system, the proposed attack methods had a severe impact on system operation and control. In particular, the high attack transferability of the proposed attack algorithms in a black‐box setting provides further evidence that the vulnerability of current DRL‐based control schemes is prevalent.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

General Medicine

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3