Electromagnetic radiation estimation at the ground plane near fifth‐generation base stations in China by using machine learning method

Author:

Shi Dan1ORCID,Li Wanqing1ORCID,Cui Keyi1,Lian Cheng1ORCID,Liu Xiaoyong1,Qi Zheng2,Xu Hui3,Zhou Juejia4,Liu Zhao4,Zhang Hua4

Affiliation:

1. Electronic Science and Technology Beijing University of Posts & Telecommunications Beijing China

2. Zhongxun Post and Telecommunications Consulting Design Institute Beijing China

3. Beijing Municipal Nuclear and Radiation Safety Center Beijing China

4. Xiaomi Communications Co., Ltd. Beijing China

Abstract

AbstractA novel method based on machine learning is proposed to estimate the electromagnetic radiation level at the ground plane near fifth‐generation (5G) base stations. The machine learning model was trained using data from various 5G base stations, enabling it to estimate the electric field intensity at any arbitrary radiation point when the base station provides service to different numbers of 5G terminals which are in different service modes. The inputs required for the model include the transmit power of the antenna, the antenna gain, the distance between the 5G base station and 5G terminals, terminal service modes, the number of 5G terminals and the environmental complexity around the 5G base station. Experimental results demonstrate the feasibility and effectiveness of the estimation method, with the mean absolute percentage error of the machine learning model being approximately 5.98%. This level of accuracy showcases the reliability of the approach. Moreover, the proposed method offers low costs when compared with on‐site measurements. The estimated results can be utilised to reduce test costs and provide valuable guidance for optimal site selection, thereby facilitating radio wave coverage or electromagnetic radiation regulation of 5G base stations.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3