Dual‐band pattern diversity liquid antenna with passive beam‐steering of the broadside modes

Author:

Gudivada Viswanadh Raviteja1ORCID,Huang Yi1ORCID,Wang Hanyang2ORCID,Yang Yu Chan3ORCID,Bennett Elliot L.4ORCID

Affiliation:

1. Department of Electrical Engineering and Electronics University of Liverpool Liverpool UK

2. Huawei Technologies (U.K.) Ltd. Reading UK

3. Shanghai Huawei Technologies Company Ltd. Shanghai China

4. Department of Chemistry University of Liverpool Liverpool UK

Abstract

AbstractA dual‐band liquid cylindrical dielectric resonator antenna with pattern diversity at two different frequency bands is proposed using the lower order and higher order modes of the HEM and TM modes namely HEM11δ, HEM12δ+1, HEM31δ+1, HEM13δ, TM01δ, and TM02δ. The proposed antenna is designed to cover the GPS L2 band and the lower Wi‐Fi band at 1.227 and 2.4 GHz frequencies, respectively. The HEM modes which constitute the primary radiating modes achieved around 20.84% and 19.35% impedance bandwidth at lower and higher bands, respectively. In the later stage, beam‐steering is performed, whereby the realised broadside HEM modes at both lower and higher bands were passively steered with simple physical re‐orientation of the antenna structure. For this, the liquid's natural fluidic property of adhering to gravity is taken as an advantage which makes the proposed antenna adaptively steer its radiation pattern always towards the sky, irrespective of the tilt angle of the antenna. This concept of passively steering two modes at two different frequency bands without the use of any mechanical, electrical, or other associated components is presented for the first time.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A passive beamforming hemispherical liquid antenna using a simple metal ball;IET Microwaves, Antennas & Propagation;2024-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3