Physics‐informed surrogates for electromagnetic dynamics using Transformers and graph neural networks

Author:

Noakoasteen O.1ORCID,Christodoulou C.1,Peng Z.2,Goudos S. K.3ORCID

Affiliation:

1. Department of Electrical and Computer Engineering University of New Mexico Albuquerque New Mexico USA

2. Department of Electrical and Computer Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA

3. Department of Physics ELEDIA@AUTH Aristotle University of Thessaloniki Thessaloniki Greece

Abstract

AbstractA novel use case for two data‐driven models, namely, a Transformer and a convolutional graph neural network (CGNN) is proposed. The authors propose to use these models for emulating the dynamics of electromagnetic (EM) propagation and scattering. The Transformer translates a past sequence into a future sequence by constructing representations from the past and using it to predict the future, taking all of its own previous predictions as input at each step of prediction. The CGNN updates the current state of attribute vectors of each node by passing it information (messages) from all of its neighbouring nodes. We train these models with FDTD simulations of plane waves propagating and scattering from PEC objects. The authors demonstrate that, within the bounds of computational resources, the Transformer can be utilised as a surrogate for EM dynamics, providing 14× speed‐up, while the CGNN can be utilised as a next‐frame predictor, providing 9× speed‐up. When comparing the accuracy of these two models with the authors’ previously developed Encoder‐Recurrent‐Decoder (ERD) model, it is observed that the error for both the Transformer and the CGNN remains within the same bound for the ERD model. To the best of the authors’ knowledge, this work is the first to utilise the Transformer as a surrogate for EM dynamics.

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3