Affiliation:
1. School of Electrical and Electronic Engineering University College Dublin Dublin Ireland
2. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada
Abstract
AbstractRadio wave propagation modelling in railway environments is of fundamental importance in designing reliable train communication systems. Parabolic equation (PE) methods have been widely applied to the modelling of wave propagation in tunnels due to their high computational efficiency and fidelity. The finite‐difference parabolic equation (FDPE) and the split‐step parabolic equation (SSPE) methods are two commonly used approaches to solve PE numerically. However, the relevant literature is still missing a comprehensive study of their performance, including the selection of parameters such as discretisation steps and the tradeoffs involved in terms of their accuracy and efficiency, especially as current wireless systems shift to high frequencies. In this study, a systematic analysis of the error and computational complexity of the FDPE and SSPE methods for radio wave propagation modelling in tunnels is provided. Guidelines for the choice of their parameters are provided, and their performance is demonstrated through both numerical examples and experimental measurements in actual tunnel cases.
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献