SAM‐Y: Attention‐enhanced hazardous vehicle object detection algorithm

Author:

Wang Shanshan1ORCID,Liu Bushi1,Zhu Pengcheng1,Meng Xianchun1,Chen Bolun12,Shao Wei3,Chen Liqing1

Affiliation:

1. Faculty of Computer and Software Engineering Huaiyin Institute of Technology Huaian China

2. Department of Physics University of Fribourg Fribourg Switzerland

3. Shenzhen Research Institute Nanjing University of Aeronautics and Astronautics Shenzhen Guangdong China

Abstract

AbstractVehicle transportation of hazardous chemicals is one of the important mobile hazards in modern logistics, and its unsafe factors bring serious threats to people's lives, property and environmental safety. Although the current object detection algorithm has certain applications in the detection of hazardous chemical vehicles, due to the complexity of the transportation environment, the small size and low resolution of the vehicle target etc., object detection becomes more difficult in the face of a complex background. In order to solve these problems, the authors propose an improved algorithm based on YOLOv5 to enhance the detection accuracy and efficiency of hazardous chemical vehicles. Firstly, in order to better capture the details and semantic information of hazardous chemical vehicles, the algorithm solves the problem of mismatch between the receptive field of the detector and the target object by introducing the receptive field expansion block into the backbone network, so as to improve the ability of the model to capture the detailed information of hazardous chemical vehicles. Secondly, in order to improve the ability of the model to express the characteristics of hazardous chemical vehicles, the authors introduce a separable attention mechanism in the multi‐scale target detection stage, and enhances the prediction ability of the model by combining the object detection head and attention mechanism coherently in the feature layer of scale perception, the spatial location of spatial perception and the output channel of task perception. Experimental results show that the improved model significantly surpasses the baseline model in terms of accuracy and achieves more accurate object detection. At the same time, the model also has a certain improvement in inference speed and achieves faster inference ability.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3