OmDet: Large‐scale vision‐language multi‐dataset pre‐training with multimodal detection network

Author:

Zhao Tiancheng1,Liu Peng2,Lee Kyusong1ORCID

Affiliation:

1. Binjiang Institute of Zhejiang University Hangzhou Zhejiang China

2. Linker Technology Research Hangzhou Zhejiang China

Abstract

AbstractThe advancement of object detection (OD) in open‐vocabulary and open‐world scenarios is a critical challenge in computer vision. OmDet, a novel language‐aware object detection architecture and an innovative training mechanism that harnesses continual learning and multi‐dataset vision‐language pre‐training is introduced. Leveraging natural language as a universal knowledge representation, OmDet accumulates “visual vocabularies” from diverse datasets, unifying the task as a language‐conditioned detection framework. The multimodal detection network (MDN) overcomes the challenges of multi‐dataset joint training and generalizes to numerous training datasets without manual label taxonomy merging. The authors demonstrate superior performance of OmDet over strong baselines in object detection in the wild, open‐vocabulary detection, and phrase grounding, achieving state‐of‐the‐art results. Ablation studies reveal the impact of scaling the pre‐training visual vocabulary, indicating a promising direction for further expansion to larger datasets. The effectiveness of our deep fusion approach is underscored by its ability to learn jointly from multiple datasets, enhancing performance through knowledge sharing.

Publisher

Institution of Engineering and Technology (IET)

Reference60 articles.

1. Faster r‐cnn: Towards real‐time object detection with region proposal networks;Ren S.;Adv. Neural Inf. Process. Syst.,2015

2. You Only Look Once: Unified, Real-Time Object Detection

3. SSD: Single Shot MultiBox Detector

4. Zhou X. Wang D. Krähenbühl P.:Objects as Points(2019). arXiv preprint arXiv:1904.07850

5. End-to-End Object Detection with Transformers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3