Instance segmentation by blend U‐Net and VOLO network

Author:

Deng Hongfei1ORCID,Wen Bin12,Wang Rui2,Feng Zuwei2

Affiliation:

1. Key Laboratory of Ethnic Education Informatization Yunnan Normal University Kunming China

2. School of Information Science Yunnan Normal University Kunming China

Abstract

AbstractInstance segmentation is still challengeable to correctly distinguish different instances on overlapping, dense and large number of target objects. To address this, the authors simplify the instance segmentation problem to an instance classification problem and propose a novel end‐to‐end trained instance segmentation algorithm CotuNet. Firstly, the algorithm combines convolutional neural networks (CNN), Outlooker and Transformer to design a new hybrid Encoder (COT) to further feature extraction. It consists of extracting low‐level features of the image using CNN, which is passed through the Outlooker to extract more refined local data representations. Then global contextual information is generated by aggregating the data representations in local space using Transformer. Finally, the combination of cascaded upsampling and skip connection modules is used as Decoders (C‐UP) to enable the blend of multiple different scales of high‐resolution information to generate accurate masks. By validating on the CVPPP 2017 dataset and comparing with previous state‐of‐the‐art methods, CotuNet shows superior competitiveness and segmentation performance.

Funder

Yunnan Normal University

Publisher

Institution of Engineering and Technology (IET)

Reference28 articles.

1. Research progress of instance segmentation based on deep learning;Xiaoxiao L.;Computer Engineering and Applications,2021

2. A survey of research on instance segmentation based on deep learning;Li S.;CAAI Transactions on Intelligent Systems,2022

3. Instance segmentation by deep coloring;Kulikov V.;arXiv preprint arXiv:1807.10007,2018

4. U‐net: convolutional networks for biomedical image segmentation;Ronneberger O.;arXiv preprint arXiv:1505.04597,2015

5. VOLO: vision outlooker for visual recognition;Yuan L.;IEEE Trans. Pattern Anal. Mach. Intell.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3