A temporal shift reconstruction network for compressive video sensing

Author:

Gu Zhenfei1,Zhou Chao2ORCID,Lin Guofeng3

Affiliation:

1. School of Electronic Information Nanjing Vocational College of Information Technology Nanjing China

2. School of Internet of Things Nanjing University of Posts and Telecommunications Nanjing China

3. Nanjing LES Information Technology Co., LTD Nanjing China

Abstract

AbstractCompressive sensing provides a promising sampling paradigm for video acquisition for resource‐limited sensor applications. However, the reconstruction of original video signals from sub‐sampled measurements is still a great challenge. To exploit the temporal redundancies within videos during the recovery, previous works tend to perform alignment on initial reconstructions, which are too coarse to provide accurate motion estimations. To solve this problem, the authors propose a novel reconstruction network, named TSRN, for compressive video sensing. Specifically, the authors utilise a number of stacked temporal shift reconstruction blocks (TSRBs) to enhance the initial reconstruction progressively. Each TSRB could learn the temporal structures by exchanging information with last and next time step, and no additional computations is imposed on the network compared to regular 2D convolutions due to the high efficiency of temporal shift operations. After the enhancement, a bidirectional alignment module to build accurate temporal dependencies directly with the help of optical flows is employed. Different from previous methods that only extract supplementary information from the key frames, the proposed alignment module can receive temporal information from the whole video sequence via bidirectional propagations, thus yielding better performance. Experimental results verify the superiority of the proposed method over other state‐of‐the‐art approaches quantitatively and qualitatively.

Publisher

Institution of Engineering and Technology (IET)

Subject

Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3